Team Katsura
Wind-driven thermal comfort

Gail Brager, Luz Escalante, Matt Gonser, Michael McGlynn, Lindsay Rasmussen
Hypothesis

• Comfort is better in rooms:
 • with openings
 • on the upper floor
 • on the windward side

• How do we define Comfort?
 • Subjective surveys of the 5 team members
 • ASHRAE Thermal Sensation scale
 • Assume -1 to +1 = comfort
Methods – Rooms

• Characterize rooms based on:
 • Windward vs. leeward side of building
 • 1st vs. 2nd floor
 • Openings (windows/doors)
 • Degree of openings (ranked)
Methods – data collection

Physical
• Exterior:
 o Wind direction, windward vs. leeward → observation of trees blowing
• Interior
 o Temperature → measurement, Kestrel
 o Air Velocity → observation (consensus)
 ➢ Scale 1-5 (still to breezy)
 o Thermal Sensation → observation (individual)
 ➢ Scale -3 to +3 (cold-neutral-not)
 o Comfort → assume TS of -1 to +1 = comfortable

Personal
• Clothing value
 o Estimated (individual) → 0.4 to 0.8 clo
Results– Rooms & Average Thermal Sensation
Results

<table>
<thead>
<tr>
<th>2nd floor</th>
<th>1st floor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed</td>
<td>Partially open / closed</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WINDWARD
Conclusions

• Comfort was affected less by orientation (windward vs. leeward)
• Comfort was more affected by degree of openness (windows vs. doors, extent open, etc.)
• Windward ventilation was more readily accessible (but on this cold day, there was a little too much)
• Clo value had less of an impact because individual differences and thermal sensitivities were more significant