AIA COTE Top Ten for Students

[This news item was requested by a number of SBSEers, e.g., “I think especially because of the recent complaints by SBSE listserv members that architecture schools don’t prepare their students well for the future of climate change. I suggest you publish these successes in the newsletter.” SBSEers were among the jurors and among the sponsors of winning entries. Also see Academics in Action, p. 3.—ed.]

The American Institute of Architects Committee on the Environment (AIA COTE), in partnership with the Association of Collegiate Schools of Architecture (ACSA), would like to announce the recipients of the first annual AIA COTE Top Ten for Students.

Check out the winners, get more information, and see renderings of these projects at <http://www.ACSA-Arch.org/2015-COTE-Winners>. The selected projects were on view at the AIA Annual Convention in Atlanta (May 2015) and will be shown at the 104th ACSA Annual Meeting in Seattle (March 2016).

The jury for the AIA COTE Top Ten for Students included Nicole Gerou (Lawrence Technological University and AIAS Board Member), Bob Harris (Lake | Flato Architects), Alison Kwok (University of Oregon), Bill Leddy (Leddy Maytum Stacy Architects), and Margot McDonald (Cal Poly SLO).

Our competition sponsor, View Glass, held a tweet chat at 2–3 p.m. EDT on Wednesday, April 22. You can find more information on the tweet chat at <http://www.viewglass.com/blog/buildgreenchat-on-earth-day/>.

We will announce the 2015–2016 COTE Top Ten for Students Competition in the near future. [For more opportunities, see Competitions on Tap on pp 6–7. Are we entering a golden age of building science?—ed.]

—ACSA competitions

SBSE Election Year!

It’s time to nominate folks for President–Elect and Secretary/Treasurer. Make your selections known to Pablo LaRoche via e-mail <pmlaroche@csupomona.edu> or at the SBSE Annual Meeting at ASES at Penn State. The election will be conducted on-line during the month of October.

SBSE Annual Meeting

The SBSE Annual Meeting will be held at Solar 2015 in State College, PA, on Tuesday, July 28, from noon until 1:30, the room assignment is yet to be determined.

SBSE Retreat

This year’s retreat is fully subscribed! It should be a great gathering for sharing and networking for all. Stay tuned for the retreat recap in the fall issue of SBSE News!
Letters to the Editor

Thanks for finding a way to include my piece on the Sefaira Energy Analytics experience at USC. Magnificently, you made it all fit! I hope others are finding a way to bring sustainability and analytics into the studio. I also hope that at some point architecture schools (whether they choose to or are obligated to) will make sustainability in the design studio part of their core curriculum.

—Timothy Kohut, USC

[I found your article fitting, so we made it—fit, that is! To paraphrase the NY Times—all the news that fits.—ed.]

MSU School of Architecture conducted the first Passive House Institute U.S. Certification seminar taught by visiting professor and CPHC architect John McCreery. Three students took and passed the rigorous professional two-part exam to gain the designation CPHC!

—John McCreery, MSU, Bozeman

I think SBSEers will be interested in the “Code of Best Practices in Fair Use for the Visual Arts” by the College Art Association, <http://www.collegeart.org/pdf/fair-use/best-practices-fair-use-visual-arts.pdf>. The code is based on a consensus of professionals in the visual arts who use copyrighted images, texts, and other materials in their creative and scholarly work and who, through discussion groups, identified best practices for using such materials. They included art and architectural historians, artists, designers, curators, museum directors, educators, rights and reproduction officers, and scholarly journal editors.

—Richard Hayes

Daylighting, Led Lighting, and ROI

Daylighting architectural space is an integral part of architectural design. After all, humans occupy buildings, and humans desire a physical and psychological connection to the “outside” world. Additionally, all life on Earth, including human life, evolved under sunlight and our circadian rhythms—which govern our daily living cycles, influence our mood, and control our sleep patterns—developed in response to a connection to the outdoors. Apertures which connect interior building spaces with the exterior environment—such as windows, skylights, and atria—help define and shape the architectural character of the building and thus are important elements of architectural design. Throughout history, these apertures have served multiple functions—view, fresh air, emergency egress, communication, and so on. After the OPEC oil embargo of the mid-1970s, use of building apertures for their lighting energy-saving potential—turning off or dimming electric lights when adequate daylight levels exist—has become an established strategy in new and existing commercial buildings. Thus began a trend that has had some serious unintended consequences. Let me explain.

Building owners and architects began viewing daylight strategies, and daylighting in general, just like any other energy-saving design strategy, e.g., increased envelope insulation levels, high-efficiency HVAC equipment, and high-efficiency electric lighting. The inherent benefits of views, occupant well-being and health, improved productivity, and psychological connection to the outdoors have been forgotten or diminished, and rigid energy-related cost-benefit analysis has taken their place. Building owners and developers are now asking their architects, “What is the payback or return on investment (ROI) on integrating these daylighting strategies and daylight-responsive electric lighting controls into my building?” And worse yet, this ROI calculation can only consider the energy savings achieved by turning off electric lights, not any of the occupant productivity, well-being, and health-related benefits of daylighting. With this rigid definition of ROI, it is impossible to achieve a simple payback or an ROI that will satisfy the building owner/developer.

This whole matter has been compounded by the widespread introduction of LED lighting technology. When incandescent and fluorescent lighting technology dominated the commercial building market, significant energy savings were achievable by turning off or dimming electric lighting when adequate daylight was present. For example, with a 1 to 2 Watt per square foot lighting power density with incandescent or fluorescent lighting, a 50% lighting energy reduction generated significant energy cost savings. However, with LED lighting at a 0.5 to 0.6 W/sf lighting power density, a 50% reduction due to daylighting generates very little energy cost savings. Consequently, daylighting is no longer considered a viable energy saving design strategy just like any other energy-saving design strategy, e.g., increased envelope insulation levels, high-efficiency HVAC equipment, and high-efficiency electric lighting. The inherent benefits of views, occupant well-being and health, improved productivity, and psychological connection to the outdoors have been forgotten or diminished, and rigid energy-related cost-benefit analysis has taken their place. Building owners and developers are now asking their architects, “What is the payback or return on investment (ROI) on integrating these daylighting strategies and daylight-responsive electric lighting controls into my building?” And worse yet, this ROI calculation can only consider the energy savings achieved by turning off electric lights, not any of the occupant productivity, well-being, and health-related benefits of daylighting. With this rigid definition of ROI, it is impossible to achieve a simple payback or an ROI that will satisfy the building owner/developer.

If architects care about improving occupant comfort, health, and productivity while achieving significant energy savings, then aggressive daylighting is an essential design strategy. However, it must be an integral part of all their designs, just like indoor plumbing, and not subject to the vagaries of ROI calculations and simplistic energy economics. Architects make thousands of decisions and trade-offs during the course of designing a building, and ensuring the inclusion of aggressive daylighting into their designs is easily accomplished if it is a high priority, particularly if an “integrated design” approach is used.

Because marketplace economics does not properly value all the benefits of daylighting, and demands that it meet narrowly defined energy economic criteria before being considered and incorporated into buildings, daylighting must become a mandatory requirement in building codes and standards. Daylighting code requirements must address both quantitative (illumination levels) and qualitative (glare) issues in the “daylighted zones,” and so do in a performance-based approach. Currently, daylighting code requirements address only electric lighting controls (require daylight harvesting controls) in the perimeter zones of buildings and do not address occupant visual comfort (glare, high contrast ratios). Architects must become better-educated in understanding and applying daylighting design principles, and must be more forceful and effective in advocating for daylighting with their clients. They should not condone or participate in the misdirected conversations regarding daylighting economics, unless all the energy and non-energy benefits of daylighting are included in the economic analysis.

—Michael J. Holtz, FAIA
ACADEMICS IN ACTION

HARVARD GRADUATE SCHOOL OF DESIGN (GSD)

Students in the GSD’s daylighting class had the option to use their final project to help improve the design of early childhood education centers in Rwanda. UNICEF has developed a prototype plan to build these campuses at multiple rural sites around the country. The buildings must be daylighted because electric lighting is either unavailable or prohibitively expensive. The building design should also block unwanted solar heat gain most of the time. However, due to the elevation, they experience a heating demand and have no heating systems, thus making a well-tuned solar design imperative. The project logistics raise the most difficult design challenge in that the prototype campus plan will be built at multiple sites. At each site, the plan must be rotated to fit the extremely hilly terrain, making it difficult to design for proper sun position since the future project’s solar orientation is unknown.

The GSD students came up with creative solutions to improve the daylighting conditions. For example, they used parametric simulation in Grasshopper, DIVA, and Ladybug to develop a catalog of brick patterns, each with voids carefully designed to admit the proper sun angles. On-site craftsmen can use the catalog to select one of the appropriate patterns for each building façade depending on its 360 degree compass orientation. The students designed with locally available materials and developed solutions that will potentially save on material costs while improving daylighting and thermal performance. Special thanks to Nathan Gauthier of UNICEF Rwanda. For more information contact Holly Samuelson <hsamuelson@gsd.harvard.edu>.

—Holly Samuelson

CONFERENCE ON TAP

Sustainable Buildings Canada and iiSBE Canada are proud to host SBE16Toronto, part of the pre-eminent international Sustainable Built Environment conference series. SBE16Toronto will take place Sep 19-20, 2016, in Toronto, Canada, and is the only SBE Conference to be held in the Americas in 2016. For more information: <http://www.SBE16Toronto.com> or contact <SBE16Toronto@sbcanada.org>.

Twenty-five years ago, sustainable design was considered a vaguely interesting novelty in the building world. Today, it is a critical component for the future well being of the planet, central to the design, construction, and operation of the built environment. The recent past has seen sustainable design evolve in several related ways:

- Transition from the theme of “doing less harm” to “doing greater good”
- Restoring and regenerating living systems
- Bringing resiliency to the new climate realities
- Integrating buildings into the larger context of communities and districts.

The list above implies a complex set of parameters, challenges, and opportunities. Future development will be called on to address all of them in an integrated way. Enter your scientific paper abstract or workshop proposal at <http://sbe16toronto.submittable.com/submit> before the Sep 29, 2015, deadline. Multiple entries are permitted.

—Kera Lagios

DIVA DAY LONDON

London welcomes DIVA Day 2015!

The 4th DIVA Day will be held in London, England, co-hosted by the Architectural Association, on October 23, 2015.

More details to come, including an exciting announcement!

DIVA Day is a full-day event of presentations and panel discussions about building performance and design using DIVA and associated building simulation tools for practitioners, students, and educators. This year, in addition to going international, we are excited to be pairing with the Architectural Association in London to bring you exciting new work in the field of building performance and design. Check out previous DIVA Day presentations at <http://diva4rhino.com/diva-day>.

This year’s events will include:

- New features in DIVA 3.0
- The 2nd DIVA student competition
- Presentations by many practitioners and educators
- Networking opportunities at the DIVA Day dinner
- NEW: DIVA Training Day on Thursday Oct 22 and on Saturday Oct 24!

For more information, visit <http://www.diva4rhino.com> or contact <kera@solemma.net>.

—Kera Lagios
Here is a first cut at rethinking 21st century architectural education.

21CAS–now! AN ALTERNATIVE TO NAAB

Broadening the profession of architecture’s vision to more thoroughly include climate change mitigation and ecological literacy with its traditional high aspirations for creating inspiring and functionally useful projects for their society. How can architects meet the 2030 Challenge goal to design all new buildings and major renovations to be carbon neutral by 2030? How can we achieve the 2050 Imperative of the International Union of Architects (UIA), which calls for the entire built environment (all buildings) to be carbon neutral by 2050?

Mission: To inspire all U.S. architecture schools to immediately reformulate their curricula so that by 2020, 50% of all graduating students are competent not only to produce excellent architecture, but also to help design carbon neutral/energy-positive (CN/EP) projects. By 2025 100% (Nobody's perfect, so maybe a bit fewer.–ed.) of all graduates will be so qualified.

21CAS–now! proposes to evaluate and certify architecture schools along a continuum ranging from exploring via Silver and Gold to Platinum. However, unlike the LEED-like system of earning points for meeting prescriptions, the 21CAS–now! system would be based on a simple, but multi-dimensional, common-sense scoring system from 1 to 10 by groups of 3 evaluators.

21CAS–now!’s principal innovation for evaluating architecture schools would focus on the outcome of each school’s educational program, not by giving instructions how to achieve same. 21CAS–now! would endeavor to inspire each school instead to harness the ingenuity of their 4 principal stakeholder groups—the students, faculty, administration, and governors or trustees—to (re)shape their unique organization to meet the need for competent graduates able to help reach the 2030 Challenge goals. The evaluation and certification process would ask and then score the answers to the following questions:

1. Does the design course sequence comprehensively lead to an ability to address 2030 Challenge goals as evidenced by the theses of graduating students while maintaining the highest standards of traditional architectural aspirations?
2. Does the institution provide the resources necessary for interdisciplinary collaboration to achieve these goals?
3. Does the institution lead by applied ecological literacy requisite to achieve the 2030 Challenge?

The question that every school of architecture would undoubtedly ask its stakeholders is “what is the difference between meeting NAAB Conditions for Accreditation and 21CAS–now! certification?” The answer would lie not only in the different efforts required, but in the ability to point to a ranking which would serve each school to attract the students who are increasingly demanding proper training in CN/EP design. The schools thus ranked would have an honor badge and a new branding tool /Ouch!–ed./ at their disposal. NAAB-accredited schools cannot make such a claim.

In summary, the 21CAS–now! concept turns the idea of architectural education topsy-turvy: it is based on an admission that effective carbon neutral design teaching is in its infancy in architectural education. This very basic realization can be a creative and innovative learning process for all participants in a school’s entire curriculum as well as its culture because the 2030 Challenge, the 2050 Imperative, and climate change mitigation are all voyages into the unknown! A scary, but also a very energizing, idea!

—Peter Papesch

COOL STUFF—EARTH NOW

NASA has an application for both iPhones and Android. It’s called Earth Now and can help undergrad students gain an impression of earth’s different climates (including air temperature, water vapor, and air pollution). The links for iOS and Android, respectively:

—Mohammad Taleghani
PERFORMANCE MODELING SOFTWARE

SEFAIRA EDUCATION PROGRAM

You can participate in the Sefaira Education Program (SEP) and obtain education licenses for yourself and for your students. We now have over 100 schools signed up and have many instructors who have shared their experience using Sefaira with their students and their students’ work—some have even won competitions using Sefaira!

We’ve extended graphics customization and vastly improved quality of output. In the coming months we are working to push our daylighting tool to be LEEDv4 compliant.

—Joy Tennenbaum

SPOT ENHANCED

We have just released a new version of the Sensor Placement + Optimization Tool (SPOT) daylighting and electric lighting software. Visit <http://www.daylightinginnovations.com/spot-home> to learn more and to download the software.

A number of educators who have used past versions of SPOT in their lighting and daylighting programs may be interested in the updated version. There are still old, free versions available, but the new version, SPOT Pro, is commercial software with educational licenses available.

SPOT Pro is a Windows-based, stand-alone interface to a Radiance ray-tracing engine that sits accessible behind the scenes. SPOT Pro has a number of unique interface and simulation features:

- Optical daylighting system annual simulation
- Shade control simulation—both automated/photosensor-based control and a range of manual shade control algorithms are available
- Side-by-side annual metrics reports—compare various daylighting metrics with standard daylighting reports for LEED (v4, 2009, v2.1), CHPS, and a SPOT performance report
- “Design Day” calculations—results showing average “design day” conditions (calibrated to climate file) rather than a specific weather condition in an hourly weather file
- Simulation of photosensor systems—SPOT lets you refine the control system settings and provides an annual simulation of the interaction between electric lighting and daylighting
- Output to DOE-2 and EnergyPlus
- Internal Geometry Modeler—with blocks, sloped ceilings, monitors, and sawtooth geometries available
- Material Database and Editor—new material database allows colors, patterns, glass, metals, and BSDF files to be assigned to your model’s surfaces
- Improved Renderings—use of materials and patterns greatly improve the quality of the perspective and sectional renderings.

This software is in final beta testing stages with an official v5.0 release coming summer 2015. Reduced-price educational licenses are available, and commercial licenses bought during the final beta stage are ½ off and are valid for all SPOT Pro 5.X releases. Periodic SPOT training webinars will be held throughout 2015, refer to the web site for scheduled dates or e-mail <spot@daylightinginnovations.com> if you are interested in scheduling or joining an existing SPOT webinar.

—Zack Rogers

Follow Murray!

Energy Design Tools
@EnergyToolGroup

For the past twenty years, the Energy Design Tools Group at UCLA has been designing energy analysis tools for architects, engineers, teachers, students, and those interested in understanding the climate in which they live, work, or practice. These tools include: (1) Climate Consultant, the day-one analysis tool best employed before pen is put to paper, and (2) HEED, an easy-to-use energy analysis tool that helps the designer, builder, or homeowner zero in on the energy features that will have the greatest impact on energy use and cost of energy. Most remarkably, Climate Consultant and HEED are free and continually being improved (thanks to support from the California Energy Commission). We would like to ask SBSE to help spread the word. Please like us on Facebook, follow us on Twitter, and ask your students, co-workers, and friends to do the same.

<https://twitter.com/EnergyToolGroup>

—Tim Kohut
JOURNALS LIST

The link <https://www.dropbox.com/s/ iflgqbm7mnr4o77r/20150516%20architecture%20periodicals%20rank%20scimagojr. xlsx?dl=0> or the QR code below should access an Excel spreadsheet of (arguably) the top periodicals and conferences in architecture, interior architecture, and industrial design.

We (the UHCoad faculty) put these together at the behest of our Provost who asked for a list by which we (and she) would annually evaluate our college’s three degree programs.

Please add your own resources or share any part of this one. Additions and corrections would be most appreciated.

The list started with SCIImago’s scientific journal ranking (the 2-year citation data is identical to impact rating). The AASL (librarians) list is added in either “essential” or “supplemental” rank. Finally, the Australian Research Council’s A*, A, B, C ranked list was used. To those seeds we added all the journals the faculty could argue for. For the ranked list there’s much agreement about the top half of the list. The conference list is a separate thing. No one can really claim the text that reference them is particularly insightful. Unfortunately the two chapters of Part 1 of the book follow this pattern—citing great examples, going light on their understanding or analysis, and using diagrams (like the one on the cover) that don’t reflect the true nature of light propagation in space. This introduction to the topic misleads the uninitiated and evokes scorn from the knowledgeable. Oh dear! In summary, the first 90 pages of the book are well-intentioned, but poorly presented.

Don’t bother with Part 1, go immediately to Part 2. The final three chapters speak to the author’s passion and expertise. They present an evolution from the static prediction models of the past and the codes and regulations that incorporate them to the evolving dynamic models for daylight assessment discussing climate-based models and the new daylighting metrics, to a new paradigm for daylight assessment that includes both objective and subjective measurements. These chapters are both relevant and interesting, however they are plagued by some inferior graphics in the initial chapter—depicting historical methods such as the BRE protractors (blurry) and misrepresent the penetration of light into architectural space (as does the cover illustration). This chapter, however, makes the case for going beyond these historic methods to newer and proposed methods described in the following two chapters. These two chapters are the heart of the book, presenting the author’s research and point-of-view. Read them! ☀️

—Bruce Haglund

COMPETITIONS ON TAP

ARCHITECTURE AT ZERO

A Competition for Zero Net Energy Architecture

The design challenge is to create a zero-net-energy housing project on the campus of UC San Francisco at Mission Bay. This competition, sponsored by Pacific Gas and Electric Company (PG&E), serves to inform the public of the need for more energy-efficient buildings and the value of design excellence in resolving the challenge. All submissions will be included in an exhibition held in the fall of 2015. Architects, designers, urban planners, landscape architects, engineers, interns, and students of these disciplines are eligible to enter.

Up to $25,000 in total prize money will be awarded to winners—both students and professionals. Registration for students is $25 by the Aug 28, 2015, deadline. The final submission deadline is Sep 25, 2015, 1:00 PM PST.
RESEARCH NEWS

CARE PROVISION FIT FOR A FUTURE CLIMATE

A new research project funded by Joseph Rowntree Foundation (UK) is examining how far existing care homes (for the elderly) are fit for a future climate, and to consider the preparedness of the care sector in light of the consequences of climate change, especially overheating. The project has recently started and is led by Rajat Gupta of the Oxford Institute for Sustainable Development at Oxford Brookes University.

Research in the UK and elsewhere has highlighted that the older population is particularly vulnerable to negative health effects from climate change, especially due to issues of overheating. It is therefore vital that housing and care facilities are designed, built, and managed to take account of climate change, and residents are adequately supported to deal with the potential social consequences of climate change and extreme weather such as heat waves.

The methodological approach is case study based and interdisciplinary, drawing from building science and social science methods, comprising dynamic thermal simulation, physical monitoring, building surveys, and semi-structured interviews across four different care settings. An international review of existing evidence is undertaken to identify the overheating risks posed to the care sector from climate change, examine ways by which building design can influence overheating risk, and consider the impact of institutional contexts, management, and staff practices on the thermal comfort of residents during hot weather. Using climate modelling, current and future climate change risks are assessed for each case study. Empirical data is collected through physical monitoring of indoor environmental conditions and building surveys are conducted to identify design features that can enable or prevent occupants and their carers, to control their thermal environment during periods of hot weather. Qualitative feedback is gathered through semi-structured interviews with a selection of designers, residents, and staff.

The results from the study will be used to identify recommendations for wider policy and practice to adapt homes for an aging population living in a warming climate.

If you have undertaken research in climate change adaptation of homes for the elderly, please get in touch with Rajat <rgupta@brookes.ac.uk>.

—Rajat Gupta

COMPETITIONS ON TAP [CONT.]

RACE TO ZERO 2016

This competition will challenge collegiate teams to apply sound building science principles to create cost-effective, market-ready designs that meet DOE’s Zero Energy Ready Homes program requirements.

The key enhancement to the competition is its structure. The competition will have four categories. Only one team from each school can submit an entry in each category.

1. Suburban single-family housing
2. Urban single-family housing
3. Attached housing (2–6 unit rowhouse projects)
4. Small multi-family (up to 3 stories).

The 2016 competition guidelines will be available in August 2015. For details stay tuned to <http://energy.gov/eere/buildings/us-department-energy-race-zero-student-design-competition>.

To see the results from the 2015 Race to Zero competition and the winning designs, visit the 2015 Race to Zero results page <http://energy.gov/eere/buildings/2015-results>.

JOB OPS

UNIVERSITÉ LAVAL

Seeking candidates for a Professor in Architectural Design with expertise and experience in one (or more) of the following five areas of practice:

- building science: energy, materials, acoustics
- construction and architecture
- habitats and cultures: an intercultural approach to architecture and design
- people–environment relationships: the human aspects of architecture and architectural programming
- innovative architectural practice.

Candidates must be fluent in the French language or have a working knowledge and demonstrate their determination to quickly achieve fluency.

Send your application before August 21, 2015, to Gianpiero Moretti; Director, Ecole d’architecture; Faculté d’aménagement, d’architecture et des arts visuels; Édifice du Vieux-Séminaire-de-Québec 1 Côte de la Fabrique Québec; QC; Canada G1R 3V6 or to <direction@arc.ulaval.ca>.

If you have any questions, please contact Gianpiero Moretti <direction@arc.ulaval.ca>.

TEXAS A&M

The College of Architecture is conducting a worldwide search for the position of Department Head in the Department of Architecture.

TAMU programs include the Bachelor of Environmental Design and the M.S., M.Arch., and Ph.D. in Architecture. The M.Arch. program is accredited by NAAB. Following the accreditation review in 2014, the M.Arch. was awarded an eight-year term. The M.S. and Ph.D. in architecture are research-oriented degrees that attract a diverse student body seeking advanced knowledge in preparation for careers in architectural research, university teaching, or specialized practice and consulting.

For the full job listing see <http://bit.ly/DeptHead>.

Application materials must be received by September 15, 2015. Applications, nominations, and inquiries should be sent to Cecilia Giusti, Chair, Architecture Head Search Committee; ATTN: Katy Dunn; 3137 TAMU; College of Architecture; Texas A&M University; College Station, TX 77843–3137.
JOHN REYNOLDS SUSTAINABILITY SYMPOSIUM

On May 17, 2015, the John Reynolds Sustainability Symposium brought leaders, teachers, former students, colleagues, and friends to UOregon to honor the decades of contributions, teaching, and leadership in sustainable design and energy policy of John Reynolds. For more than 45 years, John has explored how people use energy in buildings and how buildings shape that energy usage. He’s taught courses in architectural design and building science at Oregon. Speakers included Margie Harris (Energy Trust of Oregon), Denis Hayes (Bullitt Foundation), Ed Mazria (Architecture2030), Mick Pearce (McComish Tarabuk Architects), Jason McLennan (International Living Future Institute), and Jean Carroon (Goody Clancy). A panel of Oregon-taught teachers moderated by Virginia Cartwright (Oregon) presented work inspired by John—David P. Y. Lung (Hong Kong), Susan Ubbelohde (California), and Alfredo Fernández–González (UNLV). In fine form and humor, G. Z. Brown introduced the final speaker, John Reynolds, who delighted more than 165 people with “Courtyards: Aesthetic, Social, and Thermal Delight.” Details, see <http://architecture.uoregon.edu/events/sustainability-symposium>.

Sound gems overheard at the symposium:

“The first of anything is more expensive …”—Denis Hayes (on the Bullitt Foundation)
“Tuning the building (CH2) took about 3 years.”—Mick Pearce
“We ignore our existing buildings, but our challenge is to make them work.”—Jean Carroon
“I’m inspired to change the world now!”—texted from a student participant

—Alison Kwok

SBSE CALENDAR

2015

Jun 24–26 2015 BTES Conference/Salt Lake City, UT, United States
Jul 28–30 ASES Solar 2015 Conference/State College, PA, United States
Sep 9–11 PLEA2015/Bologna, Italia
Sep 10–12 Architecture and Resilience on a Human Scale/Sheffield, England
Oct 18–21 Behavior, Energy, & Climate Change Conference/Sacramento, CA, United States
Oct 23 DIVA Day/London, England
Nov 8–12 ISES Solar World Congress 2015/Daeegu, Korea

2016

Mar 2–3 Residential Bldg Design and Construction Conf/State College, PA, United States
Jun 16–19 EAAE/ARCC 2016/Lisbon, Portugal
Jul 11–13 PLEA2016/Los Angeles, CA, United States
Sep 19–20 SBE16Toronto/Toronto, Canada

FALL ISSUE SUBMITTAL DEADLINE—SEPTEMBER 1

SBSE NEWS
C/O BRUCE HAGLUND
DEPARTMENT OF ARCHITECTURE
UNIVERSITY OF IDAHO
PO BOX 442451
MOSCOW, ID 83844–2451
BHAGLUND@UIDAHO.EDU

TO: SBSE MEMBERS & FRIENDS
PLANET-WIDE

Our 2 CENTS

JR MAIL