TRIPARTIE: AGENTS OF CHANGE PERSPECTIVES

FROM UCLA

On August 3, as I stepped off the plane in Orlando (FL) the temperature was 92°F, and the humidity, about 89%. “Wow!” I thought, “These guys sure are dedicated.” During the following three days at the Atlantic Center for the Arts, nothing changed that impression. We (25 trainees and 13 trainers) measured, monitored, recorded, collected, analyzed, and presented data. The setting was absolutely perfect—a challenging climate in terms of occupant comfort and an array of buildings, some relatively new (built in the past 10 years) and some older (1970s)—all offered ample opportunity for participants to study building performance. We were divided into groups that mixed the participants so that each group contained members with different backgrounds representing different schools. Team Purple consisted of people from Carnegie Mellon, Cornell, Florida, Oregon, Paladino & Co consultants, and UCLA. Over the course of the workshop I got to know quite a bit about each of their different programs and experiences.

Right away we started working—first, we got to know all the gadgets from the wonderfully low-tech bubbles and wand for observing airflow to the very cool infrared camera for measuring surface temperature. We had to quickly come up with a viable project and hypothesis to examine a topic of our choosing, related more or less to building performance and the landscape around the buildings at the Center. This task had the added challenge of requiring testing, analysis, and results presentation in a 24-hour timeframe. Using selected sensors and the diversity of our experiences, Team Purple decided to focus on issues of thermal comfort—no doubt a small part of that decision based on the extreme thermal circumstances of the exterior environment (and interior if you considered the ubiquitous air-conditioning) and on the possibility of using the snazzy infrared camera, but mostly because we felt that our question (“If you cool a building with substantial mass overnight [during off-peak energy demand] and then turn off the cooling unit during the day [when energy demand is higher], could you produce a thermally comfortable environment for occupants?”) had wider-ranging applicability to building and construction in similar climates around the world. To test this hypothesis we monitored the Sculpture Studio, which was mostly concrete, turning up the air-conditioning overnight and recording internal...
LETTERS TO THE EDITOR

Any thought to offering an electronic-only option for members? I, for one, would gladly save SBSE the costs of printing and mailing. Besides, I like the color of the PDF!

—Don Tavey, ID

[We have; we do. When you pay your dues, select either the electronic newsletter or hardcopy. Glad you like the color! And you can have it both ways! See next letter—ed.]

I always like opening the pdf to look at all the cool pictures in color, then relish the hard copy that I can carry around all the time and read leisurely. Thanks again!

—Adam Khok, Oregon

Sorry I haven’t been very engaged, but I’m sure you understand. I’ve got a reporter from National Geographic Newsstaying at my house, and when she leaves next week, I’ll be hosting an architect from New Orleans for an as yet undetermined length of time. We’re still enrolling displaced students: I just registered a third-year grad student from Tulane. Our students are visiting shelters all over town, entering info on their laptops which will be logged into a central database linking those needing help with those offering accommodations. And, of course, our classes continue as usual (or more).—Chris Theis, LSU

[Chris was also worried that he didn’t have photos of next year’s retreat site for the News. Not so important in the big picture—ed.]

2005 ARCC JAMES HAECKER AWARD ADDRESS

[I’ve selected SBSE-centric highlights from Don Watson’s acceptance speech for the 2005 James Haecker Distinguished Leadership Award delivered at the ARCC Annual Meeting last April. It will be published in full in the forthcoming 2005 conference proceedings.—ed.]

ENVIRONMENTAL DESIGN RESEARCH—THE CORE OF GREAT ARCHITECTURE

In the past 100 years, architecture has been advanced through research by architects, educators, scholars, and researchers. Research has created the knowledge base for architectural professional practice. The term “research” here is defined broadly as an analytic habit of mind undertaken to establish knowledge that informs the design of the built environment. It encompasses many ways to develop architectural knowledge, including scientific and applied research, scholarship argued from evidence, and systematic design studies that explore alternative possibilities. Villecco and Brill (1981) offer a similar definition, describing environmental design research to include development of rigorous theories and principles, evaluation and documentation of findings, translation into policy design guidelines, and/or creation and critical analysis of design alternatives.

This tradition of environmental design research needs to be recognized and honored. The multifaceted methods and venues that contribute to this tradition have been diffuse and ill-defined, which may have the advantage of encouraging a wide latitude for creative forms of research, adaptable to a creative and dynamic profession. A disadvantage is that the vital role of research and its contributions to architecture have been undervalued and underfunded.

About one hundred years ago, Frank Lloyd Wright published Organic Architecture, proclaiming that design of “furniture, building, setting, and environment” should be conceived as an organic unity, “all things together at work as one thing,” anticipating by fifty years the definition of environmental design. Early in his career, Wright published portfolios of drawings and designs. At the same time in Europe, Sant’Elia and Marinetti published the Futurist Manifesto and Tony Garnier published Cité Industrielle. Each exemplified the architectural portfolio as a means to advance ideas through drawing and publication of visionary plans and projects. In the 1920s, a profusion of architectural manifestos inaugurated the modern movement (Conrads 1984). Every architect, it would seem, set forth a list of design principles, anticipating research topics of ensuing decades: function, technology, health (“hygiene”), solar design, and climate.

Le Corbusier described the design process as a “patient search,” similar to what Donald Schon (1983) would much later define as “design as inquiry.” Aalto, Le Corbusier, Gropius, and Breuer included analysis of sun angles, climate, and daylighting in their designs. Richard Stein, author of one of the signal books of the 1970s, Architecture and Energy, told of working in the Gropius office in Cambridge, drawing hour-by-hour sun angles to fine-tune the shading treills of the Gropius home in Lincoln, MA. The interest in sun and climate was continued in the 1930s by Richard Neutra in California. George and William Keck’s work began as model house demonstration prototypes for several Chicago expositions (Crystal House 1932). The Crystal House was warmed by the sun, an unanticipated result that began a series of Keck brothers pre-WWII investigations of “solar houses.”

After WWII, John Entenza, editor of Arts & Architecture, initiated a program to promote modernism in house design through case study houses. From 1945 to 1966, twenty-six Case Study houses were built, including designs by Pierre Koenig, Charles and Ray Eames, and Eero Saarinen. In this same spirit, Roche and Dinkeloo, Saarinen’s inheritor firm, designed the 1950s Ford Foundation Headquarters in New York City with its garden atrium designed by Dan Kiley to replicate healthy growing conditions for major indoor planting, a full-scale research prototype that became a precedent-setting model and provided lessons for current-day applications. The 1950s also saw formation of research centers in schools of architecture, including University of Michigan, Princeton, and University of Texas, where Bill Caudill undertook research in

The meeting was called to order by Jim Wasley who delivered the treasurer’s report [We’re well in the black.] and revealed that the current membership is in the process of being reviewed by Sandra Mallory—members who are not current with their dues will have their names removed from the web site on August 30, 2005.

Bruce Haglund announced that the next due date for the newsletter is September 1, 2005.

Jim Wasley announced the next round of elections for officers of the SBSE; the full slate of candidates will be announced in the next edition of the newsletter. [See page 1 for election update.] Only current members are permitted to participate in the voting process.

Student travel scholarships to the ASES conference were presented by Jim Wasley. Chris Theis and Alison Kwok announced that ten students had received scholarships to attend the SBSE retreat. [Award details on the SBSE web site <http://www.sbe.org>.

Harvey Bryan announced that the Jeff Cook Legacy Project is in the process of archiving Jeff’s slides and books. Digital copies of the slides are in the process of being uploaded to a web site where they may be downloaded for any non-commercial use. The collection contains mostly images of vernacular architecture and passive systems. [For more info ask Harvey.]

The Jeffrey Cook Memorial Scholarship was not awarded in 2005. The moneys from the 2005 scholarship will be rolled into the 2006 award. The award supports faculty and students from developing counties to attend the Passive and Low Energy Architecture (PLEA) conference.

Alison Kwok announced that the last Agents of Change training session had been held at the Atlantic Center for the Arts immediately prior to the American Solar Energy Society conference in Orlando. Over sixty schools participated in the project, and the team is now in the process of analyzing data from surveys.

Jim Wasley announced that five of the eighteen teams participating in the Solar Decathlon have advisors who are SBSE members. The competition will be open to the public on the National Mall in Washington, DC, October 7–16, 2005.

The membership discussed the 2006 SBSE Retreat, to be immediately before or after the 2006 ASES Conference in Colorado. Details about the retreat will be announced in the SBSE News and on the SBSE web site. [See page 8.]

Jim Wasley announced that eight of the eleven schools that received funding from AIA/COTE for green building courses had faculty that were SBSE members.

The membership suggested that lunch be served at the next meeting, and that the first thirty minutes of the meeting be used to describe the function of the SBSE to new members.

Walter Grondzik announced that the peer review network for tenure and promotion is still available to SBSE members. Interested parties should contact Walter or the board directly to schedule a peer review.

The meeting was adjourned at 1:25pm.

The above constitutes my understanding of the items discussed and the decisions reached. If there are any additions or corrections, please contact me. [Nick Rajkovich]

In the 1950s and 1960s, many schools of architecture initiated research in the design studio, often with guest instructors from other academic and professional disciplines. Examples include Serge Chermayeff at Yale, Shadrach Woods at Harvard, Louis Kahn and Richard Le Rocis at Penn, Konrad Wachsman at USC, and Ralph Knowles, first at Auburn and later at USC. Challenged by national energy conservation goals in the late 1970s, the newly authorized U.S. Department of Energy sponsored a multi-year research program in building design and construction. The AIA established the AIA Research Corporation, directed by John Eberhard. The multiyear funding support and research focus enabled advances in the integration of research and design practice (e.g., the DOE code for simulation of building energy use). There was also significant product innovation as a result of research partnerships—MIT received government “seed funding” to develop high performance glazing that ultimately resulted in low-e, argon-filled windows.

In the 1990s, absent government funding, private firms in architecture, engineering, and construction began undertaking their own research and development. Computer visualization of complex actions of airflow, light, temperature, fire spread (developed by consulting groups such as Arup) demonstrated that technical analysis and rapid prototyping are possible, so that schematic design can be at once technically sound and exploratory. These expanded capacities allow architects to integrate environmental design research and design more easily than at any prior time.

There remains, however, a gap in finding and accessing knowledge relevant to practice in a timely and cost-effective manner. There needs to be more accessible documentation and archiving of what is known and learned (Watson 1999). With broad access to this rich tradition, every building designed today can fulfill the challenge proposed by this talk’s title, that “research in environmental design is at the core of great architecture.” [Don Watson]
Bruce Haglund had a doubly sustainable September by presenting a design charrette on a sustainable transit facility with Don Black-ketter and Eva Matsuzaki at UI’s Sustainable Transportation Symposium and giving a talk on rating sustainability at the Sun Valley Sustainability Conference the following week.

Student Persistence in Design Studio

An SBSE listserv conversation this June revolved around grade inflation in design studio. By way of thanks and to summarize the ensuing investigation, my comments offer thoughts on the love–hate relationship students have with design studio and the various mechanisms that reinforce or undermine their persistence. The work led to a paper submitted to the Journal of Architectural & Planning Research.

This love–hate balance is propelled by students’ romantic self-image as a design hero. The design hero role varies, but it is ultimately what drives the high level of effort invested in studio. Usually and mostly good, the effort involves learning for its own sake, assimilative thinking, collaborative learning, autonomous effort, and case-based integration. Self-determination theory offers a partial explanation by positing that autonomy, relatedness, and competency support are the prime agents of motivation. All these needs are well met in studio, so deep engagement should be no surprise. Studio, thus, has been the heart and passion of architectural education. Its inherent strengths are evident, and the studio model of case-based teaching is increasingly imitated in other fields.

The down side of studio is that it frequently becomes an open-ended, all-consuming, and self-justifying monopoly of student effort. Empirical studies have shown that students typically spend 30 hours of additional time per week on studio projects and 40 additional hours during jury week. Studio often emphasizes a charrette-style effort leading to competition, product, peer pressure, and novelty for its own sake—exactly the opposite of the above-mentioned studio strengths. Moreover, these student efforts aren’t always evaluated in ways that directly reinforce pedagogical goals, project objectives, process, insight, reflective thinking, or accountability to objective design criteria such as cost or performance. It must be recognized that many studio instructors develop prodigious skill at continually reacting to the unique aspects of each student project they direct; but it is also obvious that it is far easier to evaluate work and assign grades based on effort than it is to evaluate work substantively.

Given the initial aspiration of becoming a design architect, the high grade incentive, and the authoritarian role model influence of the instructor (what Díaz–Moore calls the Zen master role), you have the essential factors that contribute to student persistence. On the negative side are the students’ knowledge that real learning requires sleep, reflection, and achievement of goals. In the face of loosely organized studio direction, indefinite expectations, and subjective criticism it is likely that students will question their own persistence. Students also know that they have other academic obligations, a social life, household chores, relationships, and perhaps a job. They are conflicted, but are entrenched in a rite of passage and centrally stationed in the studio setting where other books and papers frequently get pushed aside in favor of working on the autonomous, heroic, and compelling design project.

Why do they persist? By analogy, consider the habitual smoker or the SUV commuter, both of whom know they are acting contrary to their own beliefs, but who persist by rationalizing in some way: “I have to die of something,” or “I have to haul the kids and dogs around so often.” Psychologists call this disjuncture between personal beliefs and persistent behavior “cognitive dissonance” (Festinger 1956). It is always mitigated by a rationalization that sublates the resulting discomfort. In the case of architecture students, the rationalization is an invented significance of exaggerated studio effort: It supports their romantic intention of being a design architect. As long as they are getting high grades this rationalization is supported and will...
CONFEREE REVIEW
UC/CSU SUSTAINABILITY CONFERENCE 2005
This June UC Santa Cruz (famous mascot, the Banana Slug) hosted the 4th annual University of California/California State University joint sustainability conference, with community college participation as well (LA–CCD). The two-day event included local field trips, workshops, awards ceremony, and six parallel-track presentations covering:
- Green Building I—Case Studies
- Green Building II—Process and Strategies
- Curriculum, Research, and Student Organizations
- Food Systems, Waste Reduction, and Recycling
- Institutionalizing Sustainability
- Sustainable Campus Transportation.

There were the usual venues of exhibit hall and posters, but the Santa Cruz campus did a masterful job of making the event itself “dark green”—from the fair-trade coffee to organic food and wine, to bio-diesel shuttle buses, to compact “colleges” (housing, dining commons, and classrooms in forested clusters so that every location could be reached on foot). The event was well attended by students, administrators, and staff with a sprinkling of faculty. We spotted Cathy Corlett, Brook Muller, and Jonathan Reich amid the crowd. This event originated from the highest offices of both the University of California and California State University systems.

While a good deal of conversation at the meals, breaks, and sessions focused on how much more could be done on the campuses, the sharing of knowledge, experience, and ideas among all members of the campus community gives hope that our programs, facilities, and people are reawakening to energy conservation and the accoutrements of sustainability. No word yet on the location for next year’s event, but Santa Cruz will be hard to beat as a “green” venue. (See http://www2.ucsc.edu/sustainabilityconf2005/program.htm for more information on the talks.)

-Margot McDonald and Katy Janda

PERSISTENCE IN STUDIO [CONT. FROM P. 4]

The Bio-Solar Home catches the ample Thai sun and offers a healthy environment indoors and out.
Soontorn also took me on a tour of his new Shinawatra University, a 5-story campus where all commons are linked on the third floor by an enclosed pedestrian bridge. That way, all classes are accessible at a maximum of two floors up or two floors down. A book about this campus is enclosed pedestrian bridge. That way, all classes are accessible at a maximum of two floors up or two floors down. A book about this campus is also available, but only in Thai. Ironic, since all classes there are taught in English. The evening ended with a sumptuous meal at an open-air restaurant perched over the Chaopraya River. Next fall?–ed.

Letters (cont. from p. 2)
I joined an Oregon energy policy delegation to Thailand in late August, reconnecting with Soontorn Boonyatikarn, who must be remembered for his youthful enthusiasm as a grad student at Michigan, followed by several years of teaching and administration at Colorado Denver in the early ‘90s. He joined us at one of the earliest SBSE events, now shrouded in the mists of memory. Soontorn is head of a firm of 130, and showed me several of his many buildings. His Bio-Solar Home near Bangkok was written up last year in ArchitectureWeek; he has written a book about it as well. What a spectacular example of conservation, elegance, and technology! PV cooking with biogas, heat rejection to the swimming pool, greywater filtering, and monitored to the teeth. Clearly a candidate for a future SBSE retreat. So many people have visited, with and without advance notice, that his wife now refuses to live there, and they use it only on an occasional weekend.

[So it was better than your trip to Nome last fall?—ed.]
ON-LINE RESOURCES

Remember to add <http://www.buildinggreen.com> to your students’ resource lists for trustworthy information on sustainable building design and implementation. Contact <jerelyn@buildinggreen.com> if you want students to be able to subscribe for full access at the special semester rate—it comes with a free 1-year subscription for the professor!

-Norbert Lechner

HELIODONS

I’m giving away free drawings for building a conceptually clear heliodon [Trailer not included—ed.]. I’m also giving away 2 posters to promote sustainable design. The material can be previewed at <http://cadc.auburn.edu/sun-emulator>.

-Jeff Haberl

DESIGN GUIDES

The Whole Building Design Guide, <http://www.wbdg.org/>, is a wonderful resource. There are many topics that students and profs will find beneficial. The National Institute of Building Sciences (NIBS) has developed this comprehensive guide for exterior envelope design and construction for institutional/office buildings. The Envelope Design Guide (EDG) is continually being improved and updated through the Building Enclosure Councils (BECs). All major building envelope systems are included in the guide and performance issues (material durability, system maintenance, thermal performance, moisture protection, fire safety, acoustics, and daylighting) are examined for each major building system.

-Jack Warner

EMISSIONS REDUCTION TOOL

Air pollution planners in Texas can now calculate emissions reductions from energy efficiency and renewable energy projects thanks to a recently developed a web tool from the Energy Systems Lab, <http://ecalc.tamu.edu>. ECALC, sponsored in part by EPA, is based on 1999 and 2007 projections, uses legacy software (including DOE-2, and FCHART), and of course has a user-friendly GUI.

-Jeff Haberl

SBSE AND BRI

It’s been about a year since SBSE endorsed Building Research & Information (BRI) to its members for “its content, high quality, scope, and relevance to its members” so it seems an appropriate moment to reflect on our progress. One of the intentions was to provide access to and further involve SBSE members in the larger international research community. As BRI editor, I anticipated an increase in research articles submitted by SBSErs. Unfortunately, such was not the case, and it is slightly baffling. It can’t be that North American academics don’t write papers or don’t need to publish them! Nor can it be that BRI’s scope and standing is inappropriate for SBSErs’ research outputs.

BRI is international, and we encourage all researchers to participate—as authors, reviewers and readers. We certainly receive an abundance of papers from Asia, Europe, Africa, and South America. Are North Americans either well-served by the existing American journals or just shy? Why isn’t BRI on your list of journals for paper submissions? More details about the journal’s aims and scope can be found at <http://www.rbri.co.uk>. You can also see and judge the range of articles and special issues we publish. North Americans on our international editorial board include: Ray Cole, Dru Crawley, Charles Kibert, Alison Kwok, Hal Levin, George Seaden, Sarah Slaughter, and Bev Willis.

For those SBSE members who are not familiar with the journal, it is a major international, multi-disciplinary research journal bringing together cutting-edge ideas and developments for the built environment embracing the design, construction, and property sectors. It is unique in providing a holistic view of the built environment through a broad range of issues and disciplines. Sustainability and performance issues are prominently featured. BRI is listed in the Journal Citation Reports, and thus contributes to your credibility with research managers, university administrators, and research funders. BRI, published by Routledge, is a well-established journal in its 33rd year. Naturally, all submitted papers undergo a rigorous double-blind peer review process. We use 4 referees for each paper and attempt to provide robust feedback to authors. (By the way, BRI’s publisher has provided a special personal subscription rate to SBSE members: in 2005 it is $99 — normally personal subscriptions are $422).

Over the next year, I’m looking forward to readdressing the imbalance of North America’s under-representation and receiving more papers from SBSErs. Contact me at < r.lorch@ukonline.co.uk>.

-Richard Leoch

LEED, GREEN BUILDING, AND THE CAMPUS

The USGBC Education Committee is holding a retreat in Washington, DC, October 1–3 in advance of GreenBuild 2005 in Atlanta, GA, November 8–12. In preparation for that retreat, I am seeking SBSEers’ comments and ideas on, “How could the USGBC help you promote LEED and green building education/practices within your campus community (for faculty, staff, administrators, and students)?”

The Council will be launching an initiative that will focus on bridging green building practices and higher education in ways that better serve universities. USGBC, as compared to other higher ed organizations with goals related to sustainability and education (such as SBSE, EFS West, SCUP, Second Nature, NWF, ULSF), is differentiated by its commercial orientation of promoting green building through products (LEED) and services (conferences, publications, training). As an example, one suggestion to USGBC could be facilitating USGBC “campus chapters” that would bring faculty personnel and academics to the table to coordinate green building activities such as LEED–EB benchmarking for combined teaching and building operations benefits. In what other ways can the USGBC better serve our campuses?

Send your ideas by October 1, 2005, to Margot, USGBC Education Committee rep, at <sede@calpoly.edu>. Thanks!

-Margot McDonald
temperature through the following morning. We nearly froze the air-conditioning cooling coil and covered the inside of the windows in condensation so by morning it looked like it had been raining indoors. Thus, we not only completely disproved our hypothesis, but were also provided with an à propos theme song (Prince’s “Purple Rain”) for our afternoon presentation.

The following morning we spent more time getting to know other participants and discussing problems, questions, and plans for programs around the country. Most programs had ambitious, enthusiastic plans to continue to bring out 3-day AoC experience to their students, but at a more leisurely, digestible pace. Since my involvement with the AoC was based on a Community Design Center (CDC) project I’m working on in Los Angeles, I was interested in obtaining an AoC toolkit. Thanks to the generous loan of one toolkit, we are using sensors to monitor low-income housing designed by the CDC, hoping we can improve their designs so passive heating and cooling are more effective. (Since the units are low-income, many residents cannot afford air conditioning nor high heating costs.) The toolkit is helping us with another aspect of our project—education. Preliminary analyses indicate that the residents are not always using their utilities effectively, so we have been able to tailor our residents’ education program accordingly.

Participating in the Agents of Change has been a wonderful experience. I was not only able to learn hands-on application of building performance monitoring, but have been able to apply this experience to a real opportunity to improve performance. I’d like to thank everyone in AoC who made this experience possible, and I hope to see more of their good work in the future!

~ Jessica Morton

FROM TEXAS TECH

The College of Architecture sponsored me and four graduate assistants to attend the AoC workshop at the Atlantic Center for the Arts. One of the graduate assistants had experience with the Integrative Systems course last spring, one is a new Chancellor’s Scholar, and two were students in the course last spring.

Our big aha! is that technical numbers and terms just float around in the brain without an anchor until the numbers and terms are experienced directly. That’s what the tools allowed us to do. Twenty-nine natural light footcandles on our work surface was very comfortable. With a consistent level of humidity, warmer areas have a lower relative humidity than cooler areas. This may be a duh!, but the full meaning of relative humidity was experienced first-hand using the case study pedagogy.

I enjoyed working with individuals from programs across the country. Tech is known for students with computer savvy. At one particular moment I looked around the work area spotting a Tech student on the computer in every team.

I am sure the graduate students gained self-confidence in their abilities by participating in the workshop. Thank you, AoC, for a great workshop experience.

~ David A. Strickler

FROM CARNEGIE-MELLON

First and foremost, the venue of the workshop at the Atlantic Center for the Arts is exceptionally conducive and relevant to building diagnostics. The range of functional and spatial building configurations as well as construction typologies found at the Center, carefully planned in conjunction with the natural environment, provided a rich and interesting context. We are so often engrossed in the technicality of our tasks amidst the “concrete jungles” we have created that we tend to forget our symbiotic relation with nature and that there are other and better ways of creating a sustainable, livable human habitat.

It was a wonderful opportunity to interact with both participants from different academic institutions and professionals in practice, but the two-and-a-half-day workshop just seemed too short, especially since we were having so much fun interacting and learning as well as performing the bonding ritual of soaking our feet in the Atlantic Ocean on a sandy beach beneath The Breakers. The hypothesis formulating session was a welcome reminder that we should not transgress the basic rational tenets of scientific research in our quest to solve the world’s problems in our built environment. It is a complex world we inhabit, and our understanding of such complexity must be firmly grounded in credible knowledge. It is particularly pertinent when time and cost are ever-present constraints in practice and we must learn to operate effectively within such regimes. The short, but intensive, measurement and diagnostic exercise was ideal. It challenged team members, who were strangers to each other, to rapidly get acquainted and organized, passionately discuss the task at hand, set directions, and finally agree to work as a team. The diversity of ideas, creative use of tools, and the eventual outcomes were simply fascinating and incredible as demonstrated by the project presentations.

It was a memorable and fruitful experience for all. The final sharing session on how the knowledge and ideas acquired may be deployed in academic courses in our respective institutions reflected a renewed sense of commitment from everyone to further develop the field and educate the next generation of building researchers and diagnosticians.

~ Khee Rob Lam

ACA proved to be a venue that synthesized art and technology in a beautiful and profound way.

continued next column
SNEAK PREVIEWS: RETREAT 2006 & 2007

2006—ROCKY MOUNTAINS

The 2006 retreat will be July 15–19 at the Colorado State University Mountain Campus at Pingree Park. ASES runs from July 8–13, but the retreat site won’t be available until Friday, July 14, giving everyone an extra day in Denver. On Saturday morning at the conference hotel we’ll have a 46-person bus to pick up those attending ASES, then stop at the airport to collect those coming for just the retreat. If you arrive early on Saturday and don’t want to wait at the airport, you can take a shuttle to Fort Collins and hook up with the group at the (very green) New Belgium Brewery, where Jim Wasley has arranged a tour. The bus will then take everyone to the CSU Mountain Campus. We’ll also rent a 12-person van to take a few people on Friday night (they said they could accommodate 8–10) to iron out any last-minute details and prepare for the arrival of the main group on Saturday. The van can also be used to pick up late arrivals in Fort Collins or at the Denver airport if necessary. I assume there will be a few people who drive, so our capacity could be as many as 60.

—Chris Theis

2007—PUGET SOUND

During a July scouting mission to IslandWood on Bainbridge Island (WA) we were blown away by its beauty and environmental fitness. “The mission of IslandWood is to provide exceptional learning experiences and to inspire lifelong environmental and community stewardship.” See <http://www.islandwood.org>. Normally IslandWood hosts Seattle’s elementary school kids in fulfillment of its mission, but they think SBSE’s goals align and will consider hosting a future retreat. They’ve agreed to pencil in June 27–July 1, 2007, as the tentative retreat date. We’re hoping that SBSEers endorse an IslandWood retreat.

—Alison Kwok and Bruce Haglund

2005 RETREAT REPORT—HTTP://WWW.ARCHITECTURE.UWATERLOO.CA/FACULTY_PROJECTS/TERRI/SBSE/SBSE.HTML

WINTER ISSUE SUBMITTAL DEADLINE—DECEMBER 1

FIRST CLASS MAIL