Match the following quotations with authors from this list:

1. “The projects are then assessed using two criteria that apply to all of them in an attempt to determine if the use of a specific site that represents many of the fundamental issues implicit in a discourse on humanity’s place in nature can improve the students’ ability to perceive the site as a human construct and to conceptualize its potential to be reconstructed and interpreted through architecture.”

2. “To transform this activity from a lonely one of counter-cultural rebellion into one of mainstream practice requires only a critical mass of people who take it for granted as the basis for technical/cultural merit.”

3. “Is there a sustainable aesthetic?”

4. “That way some of the key elements of teaching sustainable architecture would be integrated into architecture curriculum: students are introduced to the issues early in their studies, the exploration of them continues throughout their education and they have an opportunity to get an in-depth knowledge of the applicable strategies and methods.”

5. “It is easy to teach students environmental technology and building science. However, it is more important to instill values and attitudes in our students. All technologies become obsolete, but principles, ethics, and values rarely change.”

6. “Their awareness expands to an understanding of the ecology of their question, with each system contributing to the resultant whole.”

7. “We only recognize the fact that man is an integral part of the environment, and that it can only lead to human alienation and disruption if he forgets that. To belong to a place means to have an existential foothold, in a concrete everyday sense.”

Answers will become clear(er) at the retreat—June 11–14—at Sorensen’s Resort in Hope Valley, California. Registration for the retreat is open until May 1, or until all 40 spots have been filled.

- Sandra Mallory
Greetings from the sunny south! In preparation for the spring semester, I was leafing through past issues of the SBSE News. In the Summer 2001 issue, you mention having copies of an older version of Solar Design Studio from Maui Solar Software. I would love to have a copy to play with if there are any left. Let me know what you need from me in the way of money.

I’m pretty sure I sent in my annual dues last summer. Is there any way to tell if I’m paid up?

I also ran across several references you made to your obsession with Einstein and relativity (and presumably light). I recently finished a book entitled, Catching the Light: An Untwined History of Light and Mind, by Arthur Zajonc. It covers some of the same subject matter as Empire of Light, but I liked Zajonc much better for his good discussion of recent developments. The discussion of Einstein was thorough. Sections on von Goethe and the work of Edwin Land were great. I learned about “chromatic adaptation” of which I was only vaguely aware, and it made for wonderful and mystifying demonstrations in my lighting class. It prompted me to get a copy of von Goethe’s Theory of Colours. I thought you might enjoy it.

Several other items of interest (for you and perhaps the next newsletter):

I recently got Sustainable Architecture White Papers (Earth Pledge Foundation, 2000). It is a collection of diverse readings (all quite short and to-the-point) and could be useful in introducing topics to students.

There is an inexpensive infrared laser temperature gun (<$100) available from Raytek.

1. If an owner is concerned with lessening the global environmental effect from building electricity use, the money spent on solar-assisted street lights would be better spent on measures that lessen the building’s peak demand during the day or shift some to night (e.g., night ice storage system used for daytime cooling). But I’m not suggesting we do away with timers that turn off office lights at 6 pm!

2. If owners are looking for ways to reduce their power bill, they would be better off going with an energy-efficient design that uses power from the grid, focusing light only where necessary. The design should make circulation paths and building entries clear, while addressing night-sky pollution and glare issues to produce a good-quality visual environment with a minimum of electrical power consumption. A high-quality design would be difficult to achieve given the PV-powered fixtures I found on the web.

If the simple picture of power plant operation I’ve painted above is correct, it’s a compelling argument for using distributed generation sources like PV or wind during the day. Does anyone know more about varying power production in large-scale plants?

—Bill Burke

One way that load control is accomplished is by using peaking plants which tend to be older, less efficient (i.e., more polluting and more expensive) than the base-load plants. Longer-term...
control is done by shutting down sections of plants (entire turbines or generators), what plants in California did to force prices up. It’s almost always the case that peak-load savings will result in greater reductions of emissions than off-peak savings. Therefore, it would be much “greener” to install a PV system to offset daytime loads than it would be to use it to charge batteries (with additional environmental implications) to run lights at night. Of course, the greenest strategy of all is to reduce the overall load as much as possible.

—Charlie Huizenga

The argument that large, conventional power plants tend not to ramp down generation at night has merit, although it doesn’t mean there won’t be any fuel and emissions savings from reduced nighttime electricity demand. The time scale on which plant output can reasonably be ramped down varies considerably among steam generation units. The basic problem is thermal inertia—a lot of pipes with water in them take a long time to change their temperature—up to a whole day to ramp a unit up to full power from a cold start-up. So, if you know you’ll want your steam generation unit on line the next day, you’d never shut it down just for the night, even if you aren’t getting paid for the electricity. Ramping power up and down, without actually shutting the unit off, is a different matter. Though still constrained by the time to change temperatures and pressures throughout the system, large fossil fuel units can serve as “load-following” plants that respond to variations in electric power demand in real-time. Hydro plants and gas turbines are preferable for this purpose, but steam plants do it, too. Furthermore, while their operators prefer all steam plants to operate at 100% output 24/7 for economic reasons, they don’t all get to do it if the demand isn’t there, and many will ramp down at night to a level where the unit doesn’t get cold. Because generators are optimized to perform at a 100% output, at reduced output levels they can become grossly inefficient. If you’re only running the unit to keep it warm, the efficiency isn’t really at issue; the fuel consumed can be thought of as a parasitic loss required to keep the plant operational. The level at which steam generation plants are typically operated at night may be lower than daytime peak demands, but more than just to keep units warm. In other words, there isn’t usually electricity being spilled at night—some of it may be stored, e.g., pumped hydro storage. The main reason it’s wasteful is that units aren’t operating efficiently at low output levels. If nighttime electric demand is reduced and output from a fossil-fuel steam generation plant at night is reduced, we are probably reducing its operating efficiency even more, in kilowatt-hours generated per therms of gas or pounds of coal. But, we’re still burning less fuel overall than before.

Nuclear units are usually kept at 100% output whenever possible for both economic and technical reasons. For safety, the basic operating philosophy is that the less you disturb it, the less chance you have of screwing something up. Besides, the marginal economic and environmental cost of an additional amount of nuclear fuel burn-up is nil (since refueling cycles occur on a fixed schedule regardless of burn-up), so once you have the nuclear plant up and running, you might as well run it at 100% output 24/7. The French are an interesting exception with 75% of their energy from nuclear, so they’re forced to run some of their nuclear units for economic reasons. For safety, the basic operating philosophy is that the less you disturb it, the more chance you have of screwing something up. The main reason it’s wasteful is that units aren’t operating efficiently at low output levels. If nighttime electric demand is reduced and output from a fossil-fuel steam generation plant at night is reduced, we are probably reducing its operating efficiency even more, in kilowatt-hours generated per therms of gas or pounds of coal. But, we’re still burning less fuel overall than before.

The “greenest” thing to do with outdoor lighting is to have none of it. Not only are there issues of poor visual quality from glaring, overly-bright fixtures, but light trespass and light pollution is a real biological issue, not just an astronomical or aesthetic concern. You will be hearing more about this issue as biologists start to publish current research on the effects of artificial light on nighttime creatures, from nocturnal mammals on down to the lowest biotic levels.

—Lisa Heschong

The argument that large, conventional power plants tend not to ramp down generation at night has merit, although it doesn’t mean there won’t be any fuel and emissions savings from reduced nighttime electricity demand. The time scale on which plant output can reasonably be ramped down varies considerably among steam generation units. The basic problem is thermal inertia—a lot of pipes with water in them take a long time to change their temperature—up to a whole day to ramp a unit up to full power from a cold start-up. So, if you know you’ll want your steam generation unit on line the next day, you’d never shut it down just for the night, even if you aren’t getting paid for the electricity. Ramping power up and down, without actually shutting the unit off, is a different matter. Though still constrained by the time to change temperatures and pressures throughout the system, large fossil fuel units can serve as “load-following” plants that respond to variations in electric power demand in real-time. Hydro plants and gas turbines are preferable for this purpose, but steam plants do it, too. Furthermore, while their operators prefer all steam plants to operate at 100% output 24/7 for economic reasons, they don’t all get to do it if the demand isn’t there, and many will ramp down at night to a level where the unit doesn’t get cold. Because generators are optimized to perform at a 100% output, at reduced output levels they can become grossly inefficient. If you’re only running the unit to keep it warm, the efficiency isn’t really at issue; the fuel consumed can be thought of as a parasitic loss required to keep the plant operational. The level at which steam generation plants are typically operated at night may be lower than daytime peak demands, but more than just to keep units warm. In other words, there isn’t usually electricity being spilled at night—some of it may be stored, e.g., pumped hydro storage. The main reason it’s wasteful is that units aren’t operating efficiently at low output levels. If nighttime electric demand is reduced and output from a fossil-fuel steam generation plant at night is reduced, we are probably reducing its operating efficiency even more, in kilowatt-hours generated per therms of gas or pounds of coal. But, we’re still burning less fuel overall than before.

Nuclear units are usually kept at 100% output whenever possible for both economic and technical reasons. For safety, the basic operating philosophy is that the less you disturb it, the less chance you have of screwing something up. Besides, the marginal economic and environmental cost of an additional amount of nuclear fuel burn-up is nil (since refueling cycles occur on a fixed schedule regardless of burn-up), so once you have the nuclear plant up and running, you might as well run it at 100% output 24/7. The French are an interesting exception with 75% of their energy from nuclear, so they’re forced to run some of their nuclear units for economic reasons. For safety, the basic operating philosophy is that the less you disturb it, the more chance you have of screwing something up. The main reason it’s wasteful is that units aren’t operating efficiently at low output levels. If nighttime electric demand is reduced and output from a fossil-fuel steam generation plant at night is reduced, we are probably reducing its operating efficiency even more, in kilowatt-hours generated per therms of gas or pounds of coal. But, we’re still burning less fuel overall than before.

The “greenest” thing to do with outdoor lighting is to have none of it. Not only are there issues of poor visual quality from glaring, overly-bright fixtures, but light trespass and light pollution is a real biological issue, not just an astronomical or aesthetic concern. You will be hearing more about this issue as biologists start to publish current research on the effects of artificial light on nighttime creatures, from nocturnal mammals on down to the lowest biotic levels.

—Lisa Heschong
SBSE PEOPLE

☞ Rula Awwad-Rafferty has been tenured and promoted to Associate Professor at Idaho.

☞ With the release of her new book, Japanese Architecture as a Collaborative Process, Dana Buntrock will present in the Design and History categories at the ACSA Annual Meeting. Her design piece, “Assembling Architecture,” begins “Construction is a messy process...” The history paper is on Toyo Ito’s Sendai Mediatheque as a new sort of civic space.

☞ Dent & Nordhaus, Architects (Stephen Dent, Richard Nordhaus) received an International Illumination Design Merit Award for 2001 for the remodel of Congregation B’Nai Israel in Albuquerque. The project has been on Architectural Record’s web site (Building Types Studies, Places of Worship) since October, 2001. Steve says they achieved a doubling of light levels while still reducing energy consumption.

☞ Katy Janda has moved to Oberlin College as an assistant professor of ecological design in their environmental studies program. She’s excited to have the opportunity to warp young minds with the study of building performance (à la Vital Signs), among other insidious topics like technology and the environment. Since Oberlin has no architecture department, the design part is more abstract than literal. Yet, Oberlin really liked the idea of hosting a future SBSE retreat.

☞ Norbert Lechner’s Heating, Cooling, Lighting: Design Methods for Architects, 2nd edition, is being translated into both Chinese and Korean.

☞ Fuller Moore and his wife, Jane, established an SBSE scholarship to fund student travel to attend SBSE events, including the retreat and ASES conference.

☞ Congratulations to Hofu Wu! The AIA grapevine tells us that he has just been elected to the College of Fellows, a well-deserved honor for one of our founding members.

BEST ERRATA

The Fall 2001 University of Tennessee College of Architecture and Design Newsletter reports that Mark DeKay, author of Wind Sun and Light, has joined the faculty. [Hired for his oratory, no doubt!—ed.]

RESEARCH FINDINGS

WELLSIAN CHECKLIST PROJECT

André Potvin of Laval inspired me to launch the Checklist Language Project. I have recruited Russian and Ecuadorian graduate students to translating the list into Russian and Spanish. [All the criteria are steeped in cultural nuance as well as typographical idiosyncrasies—ed.] I’m looking for other translators. If you or your students want to volunteer, please contact me <bhaglund@uidaho.edu>. I want to send copies in many languages to Malcolm Wells to assure him that his voice is being heard worldwide.

—Bruce Haglund

HAY FUND

The Renewable Energy Institute at Cal Poly, San Luis Obispo has awarded a $25,000 solar energy grant through the SBSE/Evelyn and Harold Hay Fund to a team of faculty at the Center for Energy Research/Education/Service at Ball State University. This project will study the effect of mean radiant temperature on human comfort in passive solar buildings. A side-by-side comparison of test buildings will allow the researchers to determine how the interior temperature varies in both time and space. The results will be used to develop design guidelines to predict how often a given strategy would produce comfortable indoor conditions. The results, due at the end of 2002, will be made available through the Renewable Energy Institute at Cal Poly.

—Margot McDonald

TRACKING AIR MOVEMENT IN THE LOGAN (HEPNER) HOUSE

Following the ASHRAE’s Buildings VIII Envelope Conference in Clearwater, FL—where Alison Kwok (UO), Walter Grondzik (FAMU), Bruce Haglund (UI), Troy Peters (UO), and Christina Bollo (UO) led a “Taking the Vital Signs of a Building” workshop for practitioners—we journeyed to the Logan House to continue the study of air movement that we’ve been conducting over the past 4 years. Fuller and Jane Moore joined us in taking on-site measurements using hot wire velocity sticks <http://www.testo.com> and conducting “illuminance sweeps” across the living space with Sylvania light meters.

Troy and Christina recently tested a low-cost visualization technique—using hydrolysis-produced microbubbles in a sodium sulfate solution to simulate stack ventilation—with a plexiglass scale model of the Logan House and a 37-gallon tank. We tested three window configurations: intended, existing, and proposed redesign.

Owners—architects Deb and Peter Hepner—continue to enjoy the house and keep their energy bills to a minimum by using natural ventilation whenever possible. Stay tuned for our paper at ASES in June 2002.

—Adison Kwok
SIGN UP FOR PATAGONIA TOOL DAY

A Vital Signs Tool Day will be held June 14–15, 2002, at the Patagonia Service Center—which houses warehousing, distribution, and customer service functions—in Reno, NV, following the SBSE Retreat in Hope Valley, CA, and preceding the ASES Conference in Reno. It will be a nine-hour event, during which participants become familiar with Patagonia’s green building and gain hands-on experience measuring aspects of its performance (e.g., daylighting, thermal stratification, visual comfort, air movement). All involved will gain experience in using equipment, conducting a mini-case study, and working in teams led by university faculty and highly trained students. Patagonia’s Roxanne Sterr, Administrative Services Manager, and Dave Abeloe, Distribution Center Director, are collaborating on this program. The building was designed by the Miller–Hull Partnership, Seattle, and was published in Environmental Building News (9/10/96) and Landscape Architecture (3/97). SBSE members, university students, and professional architects and engineers are encouraged to participate.

All you need to do to register for this free event is e-mail <bhaglund@uidaho.edu>. More info at <http://www.aa.uidaho.edu/bldgvital/PatagoniaToolDay/>. Ten people have already registered!!

—Walter Grondzik, Bruce Haglund, Alison Kwok

LETTERS [CONT.]

It’s heartening to hear that the silent members are absorbing information and community from SBSE, but speak out y’all. We’ll all benefit.—ed.

New masthead is great! Much bolder. I look forward to the spring background.

—Jerelyn Wilson, Building Green

Thanks for the vote of approval! Check out the more dramatic color version on the SBSE News web site. And summer is just around the corner, despite March snow!—ed.

CD IN REVIEW

GREEN DEVELOPMENTS CD-ROM VERSION 2.0

Available from the Rocky Mountain Institute, this CD is designed for a wide variety of design professionals, community leaders, real estate developers, and educators. Green development case studies on 200 buildings from around the world include building profiles, financing and marketing, cost effectiveness, and potential profitability of green development projects. The primary sections of the CD include excerpts from A Primer on Sustainability, by Diana Lopez Barnett with William Browning (1994), a list of resources, internet links, green development organizations, and green development guidelines. The most useful information for academics is the green development case studies of retail, educational, residential, commercial, health care, hotel/resort, industrial, mixed-use, laboratory, and institutional buildings. Each case study provides a series of images, a summary of project information, process and financial costs to build the project, and green features. To obtain the CD, see the online order form at the RMI website <http://www.rmi.org/>. It’s just $20. We hope that we’ll see RMI Research Consultant, Ben Shepherd at the SBSE Retreat.

—Alison Kwok

SBSE STRATEGIC PLANNING

A strategic planning meeting will be held March 15–17, 2002 at the Moby Dick Hotel in Nahcotta, WA. SBSE has reserved rooms, which include a huge, scrumptious breakfast (with oysters!) for the board and a small braintrust—Cris Benton, Charlie Brown, Walter Grondzik, Bruce Haglund, Alison Kwok, Sandra Mallory, John Reynolds, and Jim Wasley. Participants will provide transportation to the hotel, snacks and lunch, dinner, alcohol (particularly single malt), and a good percentage of grey matter for planning future directions, resources, and retreats for SBSE. Reviving the structure of SBSE Goals for the 90s from the 1992 Seahorse Key Retreat, we’ll examine issues facing us in terms of personal, group, and community goals. Stay tuned for outcomes!!

—Alison & Kwok
SBSE MARKETPLACE

Norbert Lechner has generously contributed 200 images from *Heating, Cooling, Lighting: Design Methods for Architects*, 2nd edition, to the SBSE PhotoCD collection. CD#14 and #15 are available ($12 each) from CERES (thank you, Bob Koester and Jeff Culp) via the SBSE web site <http://www.sbsedata.org/ml-t-imag.htm>.

Sun Angle Calculators are back @ $15 each! See the SBSE website <http://www.sbsedata.org/resources/>.

—Alison Kwok

ATTR ACTIONS

ACOUSTICS COMPETITION

The 2002 Student Design Competition, sponsored by the Architectural Acoustics of the Acoustical Society of America (ASA), involves a university performance hall, primarily for opera, and associated spaces. Entries will be judged at the 142nd ASA meeting in Pittsburgh, PA, June 3–7, 2002. Details about the competition may be found at <http://asa.aip.org/design.pdf>. Final results and photos from the 2001 competition in Chicago can be found at <http://www.ac.unomaha.edu/lwang/asa2001.htm>

Encourage your students to participate. Contacts are Bob Coffeen <coffeen@ukans.edu>, Robin Glosemeyer <rglosemeyer@jhacoustics.com>, and Lily Wang <lwang@unl.edu>.

—Lily Wang

CERES WORKSHOPS/COURSEWORK

CERES has posted information on its web site about the High Performance School Building Design Workshops to be held in Indianapolis in April at the NCAA Conference Center. Read about the workshops and download a registration brochure at <http://www.bsu.edu/provost/cheres/cheres/E_sbic.htm>.

—Bob Koester

FACULTY DEVELOPMENT WORKSHOP

Ecosa Institute is hosting a Faculty Development Workshop this May at Arcosanti <http://www.ecosainstitute.org/>. Sim Van der Ryn and Mark DeKay are among the presenters. If you have any questions, contact me <ecosa@mwaz.com>.

—Rob Israel

LIGHTING SCHOLARSHIPS

Rensselaer’s Lighting Research Center has full tuition and research assistantship scholarships available. We seek applicants from diverse backgrounds for our two full scholarships funded by the GE Fund. Applicants must be U.S. citizens of African, Native American, Latino, or Pacific Islander heritage. Information on our diversity scholarship is at <http://www.lrc.rpi.edu/newmsl/diversity.htm>.

If you have students who would like to be immersed in lighting, have them check out <http://www.lrc.rpi.edu/NewMSL/home2.htm>.

—Russell E. Loike

GREEN GLOBES

Developed for ECD Canada, *Green Globes* is an online environmental assessment system for existing buildings. It’s a stripped-down, self-assessment version of BREEAM that targets building owners/managers <http://www2.energyefficiency.org/>. If any of you want to actually run the program, I can get you an ID and password for limited free access. It would be great if some of you would test *Green Globes*. If there is enough interest, we might come up with an educational version.

—Harvey Bryan

TIA 2002 DESIGN COMPETITION: A DESERT ECOHOUSE FOR YAZD

An Ecohouse of not more than 200 square meters is for a family of two adults, two children, and an elderly relative on a site in Yazd. Details at <http://www.bh.com/companions/ecohouse/>. The prizes for the competition will include awards of: £1000, £500, £200, and 3 @ £100. Entries are due in Oxford on 1 Aug 2002. Presentation of awards will be made at the TIA 2002: Ventilation Conference in Yazd in September 2002. Entrants shall be students in a school of architecture on the date of the final submission of the project. The entry should not be more than two A1 sheets of paper.

—Sam Hui
ACSA CONFERENCE CALL

The ACSA Technology Conference will be held at the University of Oregon Portland Center, October 10–13. SBSE will sponsor a plenary speaker (to be announced).

The conference explores the craft and production of the house as a method of understanding the technologies that inform design, construction, and occupation. Influenced by climate, culture, and consumption, a broad definition of house provides for a rich diversity of topics. Researchers, educators, and practitioners are invited to share their technology and housing work. Pacific Northwest product and material associations and companies active in the housing industries will offer workshops on new applications of materials and processes featuring presentations by professional design teams. There will also be tours to manufacturing plants and housing projects. In addition, we anticipate a series of lively open sessions on topics of interest to building science educators.

Details and registration information are available at the ACSA web site at <http://www.acsa-arch.org/meetings/>.

—Christine Theodoropoulos, Oregon

GREEN BUILDING FAIR

Have you ever wondered what it would take to create a sustainability event? This year marks my third for organizing the Green Building Fair at the Pennsylvania College of Technology in Williamsport. Although we have programs in all aspects of building construction in both 2- and 4-year degrees, we don’t have specific sustainability courses. I was looking for a way to introduce sustainable products and design to students (and to gain information and develop resources for myself).

How to do it? Students in the first Building Materials course were required to contact potential exhibitors. We coached them on how to find and identify green products, effectively invite companies to participate, and send out the information under the college letterhead. The secretarial staff graciously helped print letters and fax information. Other tasks included gaining approval for the use of the space, drawing layouts for the General Services staff to set up tables and power, and tracking expenses. As I don’t have a budget line for the event and admission has always been free, we charge exhibitors from the NE U.S. and Canada a minimal fee (this year $150 for an 8’x10’ space) to cover advertising and catering costs. Exhibits showcase a wide variety of products and services. We set up a speaking schedule for exhibitors and guest speakers in special interest areas. Corporate sponsorships help defray major costs.

Who attends? We sent out flyers in the local builder’s association monthly mailing. This year we are looking at offering AIA continuing education credit for some of the sessions. Of course, students attend as well as faculty, staff, and the general public. Last year one person traveled over 4 hours one-way to attend.

Is it worth all the extra work? It seems to be! I always meet very interesting people, both by phone and in person, as I organize the event. The displays are wonderful, and the speakers provide information otherwise difficult to obtain. Public awareness seems to be growing, and people are interested in what they can do to promote sustainability. For more information on this year’s event, see our web site at <http://www.pct.edu/green_building>.

—Dorothy Gerring

A SELLSIAN TRIPTYCH

“I painted this view of Sagamore Bridge to remind us of our grandparents’ selfishness. They dug a ship canal right through Cape Cod ... and built a one-species bridge across it! Animal and plant migrations that had occurred for millenia were abruptly ended. But no one thought of those things in 1935.

“Now we do. Now we have no excuse for such self-centeredness. Wildlife bridges over highways are beginning to appear. Now it’s canal time. A living bridge will help pay down our debt to the silent world.”—Malcolm Wells

“I painted this view of Sagamore Bridge to remind us of our grandparents’ selfishness. They dug a ship canal right through Cape Cod ... and built a one-species bridge across it! Animal and plant migrations that had occurred for millenia were abruptly ended. But no one thought of those things in 1935.

“Now we do. Now we have no excuse for such self-centeredness. Wildlife bridges over highways are beginning to appear. Now it’s canal time. A living bridge will help pay down our debt to the silent world.”—Malcolm Wells

“Now we do. Now we have no excuse for such self-centeredness. Wildlife bridges over highways are beginning to appear. Now it’s canal time. A living bridge will help pay down our debt to the silent world.”—Malcolm Wells

“Now we do. Now we have no excuse for such self-centeredness. Wildlife bridges over highways are beginning to appear. Now it’s canal time. A living bridge will help pay down our debt to the silent world.”—Malcolm Wells
DON PROWLER REMEMBERED

On Sunday, February 17 the huge 1928 Ralph Cram-designed neo-Gothic chapel at Princeton University was the site to remember Don Prowler, FAIA, who taught courses on energy-conscious design at both Penn and Princeton for more than two decades as well as at Cornell, Virginia, Michigan, Chicago, and Washington.

His first college degree combined physics with fine arts, a template for his rich lifelong engagements. Don was among the new generation who launched passive solar design in the late 1970s. He was co-director and editor of the proceedings for the Second National Passive Solar Conference, Philadelphia, 1978. Don and Jeff Cook co-edited Passive Systems ’78. A major milestone, a $150,000 grant from the Department of Energy, allowed Don and Harrison Fraker to develop, with leading educators, teaching materials for energy use in buildings—volumes that provided a platform for the transformation of architectural curricula and were recognized by a Progressive Architecture Research Award.

In the past decade, he was especially active with programs sponsored by NREL, DOE, EPA, FEM, and the Sustainable Buildings Industry Council, exemplified by his collaboration in Energy-10 software development, and his leadership in teaching E-10 nationwide. As a technical consultant for many federal and private projects, he left his mark on many beautiful and efficient buildings. He was originator, author, and editor of many FEMP and SBIC publications including the new video, Labs for the 21st Century. He made pivotal contributions to the web site, “Whole Building Design Guide,” a single portal to criteria and guidelines for integrated design. In Modest Mansions: Design Ideas for Luxurious Living in Less Space, he beautifully illustrated how small American homes can be organized to be less expensive to build, cheaper to maintain, and interesting to live in.

Among those who spoke about their friend and colleague were academics (Jeff Cook, ASU; Harrison Fraker, UC Berkeley; and Doug Kelbaugh, Michigan) and professionals (Susan Maxman, past president AIA, and Helen English, Executive Director SBIC). He will be sorely missed in the many places we have not gone. ■

—Jeff Cook